找回密码
 立即注册
查看: 234|回复: 5

DeepSeek重大发布!国产AI大模型再度掀起热潮

[复制链接]

1901

主题

290

回帖

5700

积分

论坛元老

积分
5700
发表于 前天 22:36 | 显示全部楼层 |阅读模式
  在东方财富看资讯行情,选东方财富证券一站式开户交易
$ G' g; k' j( e! b, N( U                                                              国产AI大模型再度掀起热潮。
7 ]* S, e8 \% U9 w1 R  今日(1月27日),DeepSeek团队发布《DeepSeek-OCR 2: Visual Causal Flow》论文,并开源DeepSeek-OCR 2模型,采用创新的DeepEncoder V2方法,让AI(人工智能)能够根据图像的含义动态重排图像的各个部分,更接近人类的视觉编码逻辑。
& u) ?. V, p. `) @  与此同时,国内人工智能初创公司月之暗面Kimi正式发布了新一代开源模型 Kimi K2.5。据介绍,Kimi K2.5基于原生多模态架构设计,支持视觉与文本输入,将视觉理解与推理、编程、Agent等能力全部集成到一个模型当中。4 j+ n) t! |' w8 H+ V
  另外,阿里昨日(1月26日)晚间正式发布千问旗舰推理模型Qwen3-Max-Thinking,在多项关键性能基准测试中,千问表现超过了GPT-5.2、Claude Opus 4.5 和Gemini 3 Pro等顶尖模型,刷新全球纪录,进一步拓展了AI系统的推理性能边界。
" ?0 Z2 K/ ]8 g* N# a6 R8 `5 d0 |. v  DeepSeek发布新模型5 T# ?' j2 x. T1 h! v* i
  1月27日,DeepSeek发布全新DeepSeek-OCR 2模型,采用创新的DeepEncoder V2方法,让AI能够像人类一样按照逻辑顺序“看”图像。这项技术的核心创新在于改变了传统AI处理图像的方式。DeepEncoder V2让AI基于图像含义动态重新排列图像片段,而非传统的从左到右刚性扫描。这种方法模仿了人类追随场景逻辑流的方式。
. j8 {9 K: s# q* Z7 F9 K1 p' h* q; c% O  根据DeepSeek公布的技术报告,DeepSeek-OCR 2在多项关键指标上展现出显著优势。在OmniDocBench v1.5基准测试中,该模型取得了91.09%的成绩,相较于前代DeepSeek-OCR提升了3.73%。
) g# ?& ~8 j) _% x  值得注意的是,该模型在保持极高精度的同时,严格控制了计算成本,其视觉Token数量被限制在256至1120之间,这一上限与Google的Gemini-3 Pro保持一致。 在实际生产环境中,该模型在处理在线用户日志和PDF预训练数据时的重复率分别下降了2.08%和0.81%,显示出极高的实用成熟度。
! H: r' D! F8 B$ O$ j! i  k  根据DeepSeek公布的技术报告,现有的视觉语言模型(VLMs)通常采用固定的光栅扫描顺序(光栅扫描顺序)处理图像切片,即机械地从左上角扫描至右下角。DeepSeek团队指出,这种方式引入了不必要的归纳偏差,与人类视觉感知背道而驰。人类在阅读复杂文档、表格或追踪螺旋线条时,视线是受语义理解驱动的“因果流”,后一次注视往往因果依赖于前一次注视,而非单纯的空间坐标移动。
$ o% \- e) e8 Q2 c  受此认知机制启发,DeepSeek-OCR 2的核心组件DeepEncoder V2被设计用于赋予编码器因果推理能力。通过引入可学习的“因果流查询”(Causal Flow Queries),模型能够在进入LLM解码器进行内容解释之前,先在编码阶段就对视觉信息进行智能重排序。这实际上构建了一个两级级联的1D因果推理结构:首先由编码器在语义上重组视觉Token,随后由解码器对有序序列进行自回归推理。
8 i$ A: c( e* U4 s' l  这种设计不仅符合光学文本、表格和公式的非线性布局特征,还有效弥补了2D图像结构与1D语言建模之间的鸿沟。
, p  |7 D* G; C# }: k, T$ Z) `6 K  DeepSeek-OCR 2的发布不仅是一次OCR性能的升级,更具有深远的架构探索意义。DeepEncoder V2初步验证了使用语言模型架构作为视觉编码器的潜力。这种架构天然继承了LLM社区在基础设施优化方面的成果,如混合专家(MoE)架构和高效注意力机制。4 N4 Q# F% f" u2 s- o3 @0 ^
  DeepSeek团队认为,这为迈向统一的全模态编码器提供了一条有希望的路径。未来,单一编码器可能通过配置特定模态的可学习查询,在同一参数空间内实现对图像、音频和文本的特征提取与压缩。DeepSeek-OCR 2所展示的“两个级联的1D因果推理器”模式,通过将2D理解分解为“阅读逻辑推理”和“视觉任务推理”两个互补子任务,或许代表了实现真正2D推理的一种突破性架构方法。
, ~( o; y% D$ _  {- ?# {$ u+ i4 N  阿里、月之暗面也有大动作( |' G* Q6 P7 }. ~2 ]
  同日,月之暗面Kimi正式发布了新一代开源模型 Kimi K2.5。
$ K0 z  ^, `( }+ A& Q2 E  此次升级通过静默推送方式实现在官网聊天界面的自动更新,原K2模型已无缝切换为K2.5,用户无需手动操作。更新旨在提升响应速度、推理能力与多轮对话稳定性,覆盖全部Web端用户。该版本未开放独立入口或下载安装包,仅以服务端模型替换形式落地。) D7 v) s3 ?& ?/ o6 N  Q) ~0 \
  据介绍,作为Kimi目前最智能的模型,K2.5在HLE(人类最后的考试)、BrowseComp、 DeepSearchQA等多项agent评测中均取得全球开源模型的最佳成绩。
8 U! I/ ]/ ]: ~& b& h  作为一个全能型模型,Kimi K2.5基于原生多模态架构设计,支持视觉与文本输入,将视觉理解与推理、编程、Agent等能力全部集成到一个模型当中。9 b- z3 f; K! I& G- j5 Z7 a
  Kimi创始人、CEO杨植麟表示:“我们重构了强化学习的基建,并专门优化了训练算法,以确保它能达到极致的效率和性能。”5 ~: }2 k0 {! P3 o; S
  另外,阿里巴巴26日晚间正式发布千问旗舰推理模型Qwen3-Max-Thinking,在多项关键性能基准测试中,千问表现超过了GPT-5.2、Claude Opus 4.5 和Gemini 3 Pro等顶尖模型,刷新全球纪录,进一步拓展了AI系统的推理性能边界。
* F+ q. m/ Z8 y3 A' O& H3 e  通过总参数、强化学习、推理计算的极致规模扩展,千问新模型实现了性能的大幅飞跃,刷新科学知识(GPQA Diamond)、数学推理(IMO-AnswerBench)、代码编程(LiveCodeBench)等多项关键性能基准测试的全球纪录。
4 i  I( n( E8 t  具体来看,在关键的模型推理能力提升中,千问新模型采用了一种全新的测试时扩展(Test-time Scaling)机制,推理性能提升的同时还更经济。* D; N$ U; W/ x& o! A
  阿里方面表示,Qwen3-Max-Thinking总参数超万亿,进行了更大规模的强化学习后训练,并通过推理技术的系列创新,最终完成模型性能的大幅飞跃。其还大幅增强了自主调用工具的原生Agent能力,模型可像专业人士一样边用工具边思考。同时,模型幻觉也大为降低,为解决真实复杂任务打下基础。目前,普通用户可通过千问PC端和网页端试用新模型,千问APP也即将接入,所有用户都可免费体验。6 u+ I0 P# [" d
vuG7t7h3YtRt7Rze.jpg 4 O2 W% \8 ~+ w$ I
4 E1 t3 T/ W+ _+ S1 W
1 y$ I4 l/ i4 z! e) O2 J  p$ i
  全新妙想投研助理,立即体验+ k  h' ]/ o) g" d+ v
(文章来源:券商中国)
集群智慧云科服专利申请服务

1901

主题

290

回帖

5700

积分

论坛元老

积分
5700
 楼主| 发表于 前天 22:48 | 显示全部楼层
集群智慧云科服SCI/SSCI/EI期刊发表服务

30

主题

230

回帖

790

积分

等待验证会员

积分
790
发表于 前天 23:00 | 显示全部楼层
@妙想 利好浙文互联吗

0

主题

1214

回帖

3678

积分

论坛元老

积分
3678
发表于 前天 23:12 | 显示全部楼层
@妙想 利好华体科技吗?

0

主题

1214

回帖

3678

积分

论坛元老

积分
3678
发表于 前天 23:24 | 显示全部楼层
@妙想 利好久其软件吗

0

主题

1214

回帖

3678

积分

论坛元老

积分
3678
发表于 前天 23:36 | 显示全部楼层
@妙想 利好哪些股票?剔除北交所,创业板,科创板,港股等股票,给出沪深主板,强相关的股票代码及推荐理由
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


快速回复 返回顶部 返回列表